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1 Introduction

The following lecture was on polynomial identity testing and covered both univariate and multivariate
polynomials and concluded with an application of it in bipartite matching.

For any two polynomials, we can ask whether they are equal. For example, are the two polynomials,
P (x) = (x+1)2 and Q(x) = x2+2x+1, equal? It is easy to see they are. However, if we have polynomials
of higher degree, it is harder to see that they are equivalent. For example, are P (x) = (x+3)38(x− 4)83

and Q(x) = (x − 4)38(x + 3)83 equal? In the factor form, it is not that difficult to see that they are
different (you can see that different signs at x = 0). But expanded out, they will be harder to compare.
Generalising the problem, we can ask the following questions about polynomials.

Question 1. Given two polynomials, P , Q each with degree ≤ d, is P ≡ Q, that is, P (x) = Q(x) for
all x?

Question 2. Given polynomial, R, with degree ≤ d, is R ≡ 0, that is, R(x) = 0 for all x?

Note that, if we can answer question 2, we can also answer question 1. We can simply take polynomial
R = P −Q and ask whether R ≡ 0. The degree of R is bounded above by max(deg(P ),deg(Q)). This
is equivalent to asking if P ≡ Q. We will see methods to answer the above questions in the following
sections.

2 Univariate Polynomial Testing

We will first work with univariate polynomials. For the algorithms discussed later in the section, we will
need the following well-known theorem (stated without proof).

Theorem 1. If R ̸≡ 0 has deg ≤ d, then R has ≤ d roots.

The above theorem is true over any field. In particular, we will use it for Zq for prime q, i.e.
arithmetic mod q.

2.1 Is the Polynomial Identically 0?

We will see two algorithms to test whether a polynomial is identically 0.

2.1.1 Deterministic Algorithm

There is a deterministic algorithm to decide if R ≡ 0. It is as follows:

1. Pick d+ 1 distinct inputs x1, . . . , xd+1.

2. If for all i, R(xi) = 0, output R ≡ 0. Else (that is, if there exists an i for which R(xi) ̸= 0), output
R ̸≡ 0.

The above algorithm has O(d) evaluations of R.
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2.1.2 Randomised Algorithm

There is a faster randomised algorithm as follows:

1. Pick 2d distinct inputs x1, . . . , x2d.

2. Repeat the following k times:

(a) Pick i ∈ {1, . . . , 2d}.
(b) If R(xi) ̸= 0, output R ̸≡ 0.

3. Output R ≡ 0.

If R ≡ 0, the above algorithm always outputs 0 as for all xi, R(xi) = 0. If R ̸≡ 0, as R has degree
d, by Theorem 1, we have

Pr[R(xi) = 0] ≤ d

2d
=

1

2
.

Thus, as Step 2 of the algorithm is repeated k times, for the algorithm to output 0 when R ̸≡ 0, we
need to choose a root in all k iterations. Therefore, the probability that the algorithm correctly outputs
R ̸≡ 0 is ≥ 1− 1

2k
. To get a probability of error ≤ δ, we can pick k = O(log 1

δ ).

2.2 Human on the Moon

Suppose person E on earth has a n + 1-bit string w = wn . . . w0 and person M has another n + 1-bit
string w∗ = w∗

n . . . w
∗
0 . How do we evaluate if w = w∗? Communication is expensive between earth and

moon and it would be very wasteful to send the whole strings (for e.g. if they differ in one bit).
Let us define the following degree n polynomials P and P ∗:

P (x) = wnx
n + . . .+ w1x+ w0,

P ∗(x) = w∗
nx

n + . . .+ w∗
1x+ w∗

0 .

We have that w = w∗ if and only if P ≡ P ∗. So, the communication can happen as follows:

• Person E on earth randomly picks r1, . . . , rk ∈ {1, . . . , 2n} and computes r
′

i = ri (mod q) and
pi = P (ri) (mod q) for al i, where q ≥ 2n is a prime with O(log n) bits.

• E sends (r
′

i, pi), for all i to person M on the moon.

• M can check whether P ∗ and P agree on ri for all i.

Sending w would require O(n) bits. As r
′

i’s and pi’s are numbers modulo q, they are at most q − 1
and hence, have O(log n) bits, giving a total of O(log n) bits of communication.
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3 Multivariate Polynomial Testing

We will now move onto multivariate polynomials.

3.1 Is the Polynomial Identically 0?

We want to determine if R(x1, . . . , xn) ≡ 0. We need to define the total degree of a multivariate
polynomial.

Definition 1 (Total Degree). The total degree of a multivariate polynomial is the maximum of the
sum of degrees of xi’s in any term of the polynomial.

Example 1. Consider the polynomial 2xy + 3z3 + 4xyz2. The first term 2xy has degree 2, the second
term 3z2 has degree 3 and the last term has degree 4. Thus, the total degree of the polynomial is 4.

For multivariate polynomial testing, we encounter a few difficulties. For one, the terms in a polyno-
mial of total degree d can be

(
n
d

)
. Also, unlike the univariate case, R ̸≡ 0 can have infinitely many roots

as shown in the following example.

Example 2. (a) R1(x, y) = xy has infinitely many roots of the form (x, y) = (0, y) where y can be
any real number. But R1(1, 1) = 1, which means R1 ̸≡ 0.

(b) R2(x, y) = x − y has infinitely many roots of the form (x, y) = (x, x) where x can be any real
number. But R2(2, 1) = 1, which means R2 ̸≡ 0.

However, there is a theorem that allows us to conduct randomised testing of multivariate polynomials.

Theorem 2 (Schwartz - Zippel - DeMillo Lipton). For R of total degree d such that R ̸≡ 0, and given
S containing 2d elements, pick xi ∈R S for all i. Then, Pr[R(x1, . . . , xn) = 0] ≤ d

|S| .

The above theorem can be proved by induction on d, which we shall not cover here. In the following
section, we will see applications of polynomial testing to other problems.

3.2 Bipartite Perfect Matching

There is a surprising application of multivariate polynomial testing in bipartite matching. Recall that a
matching, M , is a subset of edges of a graph such that no two edges in M share an endpoint. A perfect
matching is a matching where all vertices of the graph have some edge in M incident to it. Bipartite
matching can be solved in polynomial time by using flow algorithms. However, today we will try another
approach using polynomial testing. Before we show that approach, we will define the following.

Definition 2 (Tutte Matrix). The tutte matrix AG of bipartite graph G = (V,E) is defined as follows:

auv =

{
Xuv if (u, v) ∈ E,

0 otherwise,

where auv is the element in uth row and vth column of AG and the Xuv’s are variables.

To understand, we have included an example graph G in Figure 1. A perfect matching in G would
be the set {(1, D), (2, A), (3, B), (4, C)}.
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G =

1

2

3

4

A

B

C

D

AG =


0 X1B 0 X1D

X2A 0 X2C 0
0 X3B 0 0
0 0 X4C X4D



Figure 1: An example bipartite graph G with its corresponding tutte matrix AG.

Lemma 1. G has perfect matching if and only if Det[AG] ̸= 0.

Proof. From Leibniz’s formula, we know that,

Det[AG] =
∑

sign(σ)

n∏
i=1

ai,σ(i).

where σ is a permutation of 1, ..., n.
The permutations σ correspond to perfect matchings in G where (i, σ(i)) is an edge in the matching.∏n

i=1 ai,σ(i) will be 0 even if only one of (i, σ(i)) ̸∈ E. This means that
∏n

i=1 ai,σ(i) ̸= 0 if and only if σ is
a perfect matching. So, Det[AG] ̸≡ 0 if and only if there exists some σ which is a perfect matching.

If we want to test whether a bipartite graph G has a perfect matching, it is enough to test whether
Det[AG] ̸≡ 0. To analyse the runtime of testing the above, we see that Det[AG] is a polynomial and
thus, this is reduced to a problem of polynomial testing. Det[AG] is a polynomial of degree n that has
n2 variables (one for each edge) and n! terms. The number of terms is very large, but we do not need
to evaluate them or their coefficients. The sequential running time is O(nα). However, this works well
for parallel algorithms.
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